HxGN Virtual Manufacturing

Forecasting Joint Quality : Simulation for Metal Joining

Santosh Ner Senior Manager, VMC Product ,India, ASEAN, ANZ Design and Engineering business unit Manufacturing Intelligence Division Hexagon

18 January 2024

Agenda

Hexagon Solutions

Smart Manufacturing is in our DNA

Hexagon MI's heritage and expertise is in manufacturing data, with digital touchpoints that converge the physical and digital worlds throughout the entire process: from concept to customer.

49,000 Leading manufacturers using our technologies

Over 500,000 installed software licenses

Satisfied customers: 95% renewal rate, 4.5/5.0

Hexagon's Product Portfolio

Hexagon's portfolio also includes a leading cloud-based Quality Management System (QMS) platform.

Robot and machine calibration

Non-destructive testing

Reverse engineering

•

•

Customer Challenges : Virtual Manufacturing

Shorten Lead Time

Release new product to the market with the right timing and keep advantage over competitors

Reduce Rework

Detect and correct problems early in design and process development to reduce late-stage rework

Cost Control

Reduce raw material and rework costs and weight of designed product

Optimize the Manufacturing Process

- Reduce Shopfloor try-outs
- Increase Material yield
- Define optimum Process parameter

Reduce Prototypes

Reduce the number of physical prototype tests to reduce cost and save time

Automation/Skill Transfer

Gather and share knowledge and experience to new staff, maintaining consistent high quality

Respond to Changes

Shifting the production system from mass production to small-lot, high-mix production to meet market needs.

- Decide stages in Manufacturing
- Light weighting of structures
- Reduce cost of component and assembly
- Increase life of tooling and components

SIMUFACT JOINING SOLUTIONS

WELDING SOLUTIONS

JOINING METHODS FOR DIS-SIMILAR MATERIALS: FDS, RIVTEC, CLINCHING

DIRECT ENGERGY DEPOSITION

Assembly methods supported by manufacturing simulation

Why Simulation?

One physical try-out easily costs from some tens of thousands up to some hundreds of thousands of USD ...

Save time and money by testing your ideas/process in a virtual environment

During the design process

- Verify your design before shop floor try-out
- Identify problems
- Test new designs without which usually not tested because of short budget
- During the manufacturing process
- Investigate manufacturing problems
- Get a inside look into your process
- Optimize processes

Benefits

- Obtain information about assembly properties
 - Distortions
 - Residual stresses
- find suitable process parameters & fixtures
- Reduce unwanted deformations
 - Clamping concept
 - Weld sequence
- Reduce cycle times

Replace shop floor try-out

Potential Benefits of Welding Simulation

Simufact Welding GUI

Resistance Spot Welding of a Wheelhouse

Material

- Wheelhouse: S235 (DIN St 37-3 N / AISI 1311
- Support: S235 (DIN St 37-3 N / AISI 1311)

Mesh

- Fixture: 329k surface elements
- Wheelhouse: 47k solid-volume elements
- Support: 10k solid-volume elements

Parametrization

- 5 spot welds
- Electrode: G0-13-18-32-5-5 (ISO-5821)
- Gun force: 3500N
- Net frequency: 60Hz
- Squeeze time: 5 cycles
- Ramp-up: 2 cycles (0 8kA)
- Weld time: 12 cycles (8kA)
- Ramp-down: 2 cycles (8kA 0)
- substages: 30 cycles @3500N

Resistance Spot Welding of a Wheelhouse

Resistance Spot Welding of a Wheelhouse

Arc Welding of a Car Cross Beam

Temperature

Equivalent Stress

15 | hexagon.com

Laser Welded Car Door

Enable virtual validation by leveraging laser welding simulation software

- Reduce process design/tryout costs and duration
- Improve welding process robustness
- Reduce risk in product development and launch process

Simulation Case Study

- Simulate Audi door assembly using remote laser welding
- Attempt to minimize distortion without physical tryout

Original Article can be found at: http://onlinelibrary.wiley.com/doi/10.1002/latj.201500009/pdf Wiley-VCH Verlag GmbH & Co. kGaA, Weinheim Laser Technik Journal, 2/2015

Laser Welded Car Door

Laser Welded Car Door

Comparison between experimental and simulated distortion

• Agreement in trend and magnitude of distortion

Virtual Welding & Testing

Summary of results

Material	Force (kN)			Displacement (mm)		
	Experim.	Simulation	Deviation	Experim.	Simulation	Deviation
DP600	16.5	15.9	3.8%	2.55	2.65	3.9%
Q235 1mm	8.3	8.4	1.2%	1.85	1.97	6.0%
Q235 1.5mm	14.3	15.3	7.0%	2.10	2.21	5.2%
PHS 22MnB5	18.5	19.3	4.3%	0.68	0.63	8.0%

• We are simulating the cracking phenomena (phenomenological approach, not grounded theory approach)

• All simulations were performed with the same damage parameters (JC model)

DED -Workflow

G-Code 835 E0.008 G1 X42.884 Y0.835 F9000 G1 X42.884 Y0.835 F9000 G1 X42.884 Y1.088 E0.008 F3840 G1 X67.204 Y1.088 E0.7684 G1 X67.204 Y0.835 E0.008 G1 X42.884 Y0.835 E0.7684 G1 X42.884 Y-0.498 E0.7684 G1 X67.204 Y-0.498 E0.7684 G1 X67.204 Y-1.831 E0.7684 G1 X42.884 Y-1.831 E0.7684 G1 E-2 F1200

 New G-Code
 835 E0.008

 G1 E-2 F1200
 G1 X42.884 Y0.835 F9000

 G1 E2.05 F1200
 G1 X42.884 Y1.088 E0.008 F3840

 G1 X42.884 Y1.088 E0.008 F3840
 G1 X67.204 Y1.088 E0.7684

 G1 X42.884 Y0.835 E0.008
 G1 X42.884 Y0.835 E0.7684

 G1 X42.884 Y0.835 E0.7684
 G1 X42.884 Y-0.498 E0.7684

 G1 X67.204 Y-0.498 E0.7684
 G1 X67.204 Y-1.831 E0.7684

 G1 X42.884 Y-1.831 E0.7684
 G1 X42.884 Y-1.831 E0.7684

Dreams of the future

DED- distortion compensation

Mechanical joining

Consideration of:

- elastic and plastic effects
- thermal effects and joule heating
- Adamage
- ➤ adhesive
- Use of 2D axisymmetric elements,
 3D tetrahedron or brick elements
- Simulation time starting from 5-10 minutes for 2D applications

Assembly application – mechanical joining

Reduce <u>expensive</u> physical testing !

- Find suitable connection parameters:
 - Rivet/clinching type
 - Die geometry
 - Process parameters
- Obtain information about joint strength
- Optimize joining sequence w.r.t. overall distortion

Heat Treatment Solution

What we can simulate.....

Is the selected heat treatment process feasible?

Is the selected steel feasible?

Is the selected quenching media suitable?

Is the process window safe against process tolerances?

Is the part hard where it should be hard?

Is there any crack risk occurring during the process?

Are the obtained distortions acceptable?

Are the residual compressive stresses high enough and well positioned?

Advance technologies to manufacture components

HEXAGON

Chaining Simulations

Breaking silo'ed simulations to enable 'single point of truth'

Simulation tools must be able to talk to each other

One step further: from structural to fatigue

You have the data, let's transform it into knowledge!

Manufacturing Simulation: Stress Mapping

Simufact provides end to end solution to the gear manufacturers

Aller market

sustainability

HxGN Virtual Manufacturing

Virtual Try Out | Welding & Assembly Simulation – Simufact Welding

CAPABILITIES

Beam

Testing &

Stress

Relief

Arc Laser Welding Beam

Direct Energy Electron Deposition

Brazing

Cooling & Clamping

FEATURES AND BENEFITS

- Dedicated GUI simplifies and accelerates welding process modelling
- Model process mirrors setup on the shop floor
- Robustly handle large multi-station assemblies
- GUI is designed to replicate the shop floor with integrated pre/solve/post in one environment

Further information available at

HxGN Virtual Manufacturing solutions | Hexagon

Get to know....

Summary

Virtual Manufacturing

Powered by Marc and Dytran, a suite of software solutions designed to simulate metal manufacturing processes, empowering manufacturers and engineers to optimise design for manufacturing, improve quality, and reduce time to market ultimately realise 'Shift to Zero'.

World Class Accuracy

Physics-based simulation, account for all manufacturing variabilities, ensuring precision and reliability.

Ease of Use

User-focused design mirroring manufacturers' workflows, making the software intuitive and easy to navigate.

Modular Approach

Separate modules for different manufacturing processes, with possibilities to connect relevant components for a more comprehensive process chain when needed.

Santosh Ner

Senior Manager, VMC Product ,India, ASEAN, ANZ Design and Engineering business unit Manufacturing Intelligence Division Hexagon

Join us at IMTEX 2024

Hall 3A, Stall B125

19 - 23 January, 2024 BIEC, Bengaluru

Advanced Manufacturing Solutions Hall 5, C105

l